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Abstract
To construct an optimization scheme for an extension of the Kohn–Sham approach, I introduce
an operator form of the Coulomb interaction. This form is the sum of quadratic form pairs,
which can be redefined in a self-consistent calculation of a multi-reference density functional
theory. A detailed derivation of the form is given. A fluctuation term introduced in the extended
Kohn–Sham scheme is expressed in this form for regularization. The present procedure also
provides an exact derivation of effective negative interactions in charge fluctuation channels.
Relevance to high-temperature superconductors is discussed.

1. Introduction

A new scheme for the Kohn–Sham approach [1] in
density functional theory [2–5] was proposed by the present
author [6–11]. This formulation uses the energy density
functional by the Levy–Lieb definition [3–5], ensuring
that the N-representation of the density appears in the
simulation. The extension is made by introducing a
correlation term added to the kinetic energy density functional.
Thus the method naturally gives an interacting fermion
system, resulting in a multi-reference density functional
theory. But the present approach differs from other known
methods [13–16] in the sense that the correlation term can be
chosen arbitrarily keeping the N-representable energy density
functional untouched. To solve the problem of how to optimize
the correlation term depending on the system considered, I
need to introduce a controllable form of the correlation term.

Recently, topology of the model space given by extension
of the Kohn–Sham scheme was discovered by the present
author [12]. Definition of the functional derivative of each
energy functional is thus given. The new scheme enables
one to handle multi-reference density functional theory in a
self-consistent manner without any reference calculation. For
this purpose, a new operator form of the Coulomb correlation
term is required. In this paper, I give a detailed derivation
of the quadratic form of the Coulomb operator. The positive
semi-definite form gives a fundamental tool for constructing

a numerical minimization scheme of the energy density
functional. The new form is found to possess a positive part
and a negative part. I will also give a discussion on the effective
negative interactions in charge fluctuation channels, which has
great relevance to high-temperature superconductors.

2. A quadratic form of the Coulomb operator

I now derive a new form of the Coulomb operator. Let r1

and r2 be position vectors of two electrons in the spherical
coordinate, which are r1 = (r1, θ1, φ1) and r2 = (r2, θ2, φ2).
I introduce notations for distance as r12 = |r1 − r2|, and γ =
cos−1(r1 · r2/(r1r2)). Using spherical harmonics Y m

l (θ, φ), an
expansion of 1/r12 is given as

1

r12
= 1√

r 2
1 + r 2

2 − 2r1r2 cos γ

=
∞∑

l=0

l∑
m=−l

4π

2l + 1

r l
<

r l+1
>

Y m
l (θ1, φ1)

∗Y m
l (θ2, φ2). (1)

Here, r> and r< represent a longer distance and a shorter
distance in r1 and r2.

I introduce the electron-field operator ψ†
σ (r), ψσ (r)

with spin σ and the electron density operator n̂(r) =∑
σ ψ

†
σ (r)ψσ (r). The Coulomb interaction is given in an
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operator form as

V̂ee = 1

2

∫
d3r1 d3r2

e2

|r1 − r2|
∑
σ,σ ′

ψ†
σ (r)ψ

†
σ ′(r′)ψσ ′(r′)ψσ (r)

= V̂d + V̂SIC. (2)

Here, V̂d and V̂SIC are a position diagonal term and the self-
interaction correction term,

V̂d = e2

2

∫
d3r1 d3r2

1

r12
n̂(r1)n̂(r2), (3)

V̂SIC = −e2

2

∫
d3r1 d3r2

1

r12

∑
σ

ψ†
σ (r1)ψσ (r2)δ(r1 − r2).

(4)
Using a complete set of single particle wavefunctions, ϕk(r),
these operators are re-expressed. These orbitals may be the
Kohn–Sham orbitals. Due to the orthogonality of ϕk(r), I can
introduce creation and annihilation operators, c†

k,σ and ck,σ .
First, I note a unitary transformation:

ψ†
σ (r) =

∑
k

ϕ∗
k (r)c

†
k,σ , ψσ (r) =

∑
k

ϕk(r)ck,σ . (5)

Using the expansion in equation (1), I have the next expression
for V̂d:

V̂d =
∫

d3r1 d3r2
1

r12
n̂(r1)n̂(r2)

=
∞∑

l=0

l∑
m=−l

∑
k1,k2,k3,k4

∑
σ,σ ′

2πe2

2l + 1

∫
r 2

1 dr1 r 2
2 dr2

r l
<

r l+1
>

×
∫

dθ1 dφ1 Y m
l (θ1, φ1)

∗ϕ∗
k1
(r1)ϕk2 (r1) sin θ1c†

k1,σ
ck2,σ

×
∫

dθ2 dφ2 Y m
l (θ2, φ2)ϕ

∗
k3
(r2)ϕk4(r2) sin θ2c†

k3,σ
′ck4,σ ′

(6)

=
∫ ∞

0
dp

∞∑
l=0

l∑
m=−l

X plm

{
Ŷ †

plmŶplm − Ẑ †
plm Ẑ plm

}
. (7)

This is the required form. Here X plm is a constant and Ŷplm and
Ẑ plm are single particle operators. Since the Coulomb operator
is positive semi-definite, our new form obtained as an identity
is a positive semi-definite form.

To derive the above expression, I introduce a complete set
gp,l(r) of radial functions:

∫ ∞

0
dr1gp,l(r1)gq,l(r1) = 2πδ(p − q). (8)

The next equation holds for arbitrary 
1(r) and 
2(r):∫ ∞

0
r 2

1 dr1

∫ ∞

0
r 2

2 dr2
r l
<

r l+1
>


1(r1)
2(r2)

=
∫ ∞

0
dr1 r 2

1
1(r1)

∫ ∞

r1

dr2 r 2
2

r l
1

r l+1
2


2(r2)

+
∫ ∞

0
dr2 r 2

2
2(r2)

∫ ∞

r2

dr1 r 2
1

r l
2

r l+1
1


1(r1). (9)

I insert the next expansions in two terms of the above
expression:

r 2
1
1(r1) =

∫ ∞

0
dp f1,l(p)gp,l(r1) (10)

∫ ∞

r1

dr2 r 2
2

r l
1

r l+1
2


2(r2) =
∫ ∞

0
dq f I

2,l(q)gq,l(r1). (11)

Here, coefficients are given by

f1,l(p) =
∫ ∞

0
dr1 gp,l(r1)r

2
1
1(r1) (12)

f I
2,l(q) =

∫ ∞

0
dr1 gq,l(r1)

∫ ∞

r1

dr2 r 2
2

r l
1

r l+1
2


2(r2)

=
∫ ∞

0
dr2 r 2

2

1

r l+1
2

∫ r2

0
dr1 r l

1gq,l(r1)
2(r2)

=
∫ ∞

0
dr2 ḡq,l(r2)r

2
2
2(r2). (13)

Then, I have
∫ ∞

0
dr1 r 2

1
1(r1)

∫ ∞

r1

dr2 r 2
2

r l
1

r l+1
2


2(r2)

=
∫ ∞

0
dr1

∫ ∞

0
dp f1,l(p)gp,l(r1)

∫ ∞

0
dq f I

2,l(q)gq,l(r1)

= 2π
∫ ∞

0
dp f1,l(p) f I

2,l(p) (14)

∫ ∞

0
dr2 r 2

2
2(r2)

∫ ∞

r2

dr1 r 2
1

r l
2

r l+1
1


1(r1)

=
∫ ∞

0
dr2

∫ ∞

0
dp f2,l(p)gp,l(r2)

∫ ∞

0
dq f I

1,l(q)gq,l(r2)

= 2π
∫ ∞

0
dp f2,l(p) f I

1,l(p). (15)

I may write equation (6) in the next form.

V̂d =
∞∑

l=0

l∑
m=−l

∫ ∞

0
dp

(2πe)2

2l + 1

∑
k1,k2,k3,k4

∑
σ,σ ′

× {c†
k1,σ

ak2,k1 (p, l,m)∗ck2,σ · c†
k3,σ

′ bk3,k4 (p, l,m)ck4,σ
′

+ c†
k1,σ

bk2,k1 (p, l,m)∗ck2,σ · c†
k3,σ

′ ak3,k4 (p, l,m)c†
k4,σ

′ }

=
∞∑

l=0

l∑
m=−l

∫ ∞

0
dp

(2πe)2

2l + 1

∑
k1,k2,k3,k4

∑
σ,σ ′

× {(c†
k2,σ

ak2,k1 (p, l,m)ck1,σ )
† · c†

k3,σ
′bk3,k4 (p, l,m)ck4,σ ′

+ (c†
k2,σ

bk2,k1 (p, l,m)ck1,σ )
† · c†

k3,σ
′ak3,k4 (p, l,m)c†

k4,σ
′ }.
(16)

This expression is easily rewritten in a summation of quadratic
forms, which is the final form of equation (7). Definitions of
the operators are given as follows:

Ŷplm =
∑

k1,k2,σ

c†
k1,σ

f+,k1,k2 (p, l,m)ck2,σ , (17)

Ẑ plm =
∑

k1,k2,σ

c†
k1,σ

f−,k1,k2 (p, l,m)ck2,σ , (18)

f+,k1 ,k2 (p, l,m) = 1√
2
(ak1,k2 (p, l,m)+ bk1,k2 (p, l,m)),

(19)

f−,k1 ,k2 (p, l,m) = 1√
2
(ak1,k2 (p, l,m)− bk1,k2 (p, l,m)),

(20)

2
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ak1,k2 (p, l,m) =
∫

d3r gp,l(r)Y
m
l (θ, φ)φ

∗
k1
(r)φk2 (r), (21)

bk1,k2 (p, l,m) =
∫

d3r ḡp,l(r)Y
m
l (θ, φ)φ

∗
k1
(r)φk2 (r), (22)

ḡ p,l(r) = 1

r l+1

∫ r

0
dr ′ (r ′)l gp,l(r

′). (23)

The set of functions gp,l(r) gives the complete basis of the
radial function. One possible set may be given by the spherical
Bessel functions as

gp,l(r) = 2pr jl(pr) = (−1)l ·2 · r l+1

pl

(
d

r dr

)l sin pr

r
. (24)

In this case, the factor X plm becomes

X plm = (2πe)2

2l + 1
. (25)

but we can use the same gp,l(r) for any l.
The form in equation (7) is centered at a point in space. If

we have a crystal, we can make use of the Dirac character [17]
to obtain the operator having the crystal symmetry.

3. A fluctuation term giving effective interactions

The new form can be utilized in the extended Kohn–Sham
scheme [6, 10]. Actually, I can introduce a fluctuation term
〈�|V̂Xi |�〉 with the self-interaction correction V̂SIC in the next
form:

〈�|V̂Xi |�〉 =
∑

n

X (n)
i 〈�|{(Ŷ (n)

i − 〈Ŷ (n)
i 〉)†(Ŷ (n)

i − 〈Ŷ (n)
i 〉)

− (Ẑ (n)i − 〈Ẑ (n)i 〉)†(Ẑ (n)i − 〈Ẑ (n)i 〉)}|�〉
+ 〈�|V̂SIC|�〉. (26)

Here, I use an index n to represent a set {p, l,m} symbolically
and thus the summation on n denotes the integration with
respect to p and the summation on l and m. The reason why
I number the fluctuation term as Xi is because a sequence of
models given by the Xi terms is prepared in order to have a
derivative of the energy functional. Thus the energy functional
of the new extended Kohn–Sham scheme is

G Xi [�] = 〈�|T̂ + V̂Xi |�〉 − min
� ′→n�(r)

〈� ′|T̂ + V̂Xi |� ′〉

+ F[n� ] +
∫

d3r vext(r)n�(r)

= 〈�|T̂ + V̂Xi |�〉 + 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′

+ Erxc[n� ] +
∫

d3r vext(r)n�(r). (27)

In the above definition, the kinetic energy operator T̂ is

T̂ = − h̄2

2m

∫
d3r

∑
σ

lim
r′→r

ψ†
σ (r

′)�rψσ (r), (28)

with the electron mass m, and the universal energy functional
F[n] is given by

F[n] = min
� ′→n

〈� ′|T̂ + V̂ee|� ′〉. (29)

To represent the � dependence of the density, I use a notation
n�(r) = 〈�|n̂(r)|�〉. The definition of Erxc[n] is given by
equation (27) itself.

In the process of searching for the model, strength of
X (n)

i is a relevant variable. In equation (26), X (n)
i acts as a

set of weights for the fluctuation of physical operators Ŷ (n)
i ,

Ẑ (n)i , which are non-Hermitian in general. Note that the whole
operation of V̂Xi is Hermitian as well as V̂d. It is also important
to find that the fluctuation term is always counted from a
density n�(r) in the simulation. Thus, instability against part
of the fluctuation term implies that a tested |�〉 is improper
as a variational state appearing in the process of searching
for the true ground state. Now, if each term in equation (26)
is identical to the corresponding term given in the previous
section and the interaction strength is the same as X plm , and
if the self-interaction correction terms are properly taken into
account in the determination of the basis ϕk(r), the universal
energy density functional is reproduced when we count Erxc.
In other words, when we perfectly introduce all of the relevant
fluctuations in the simulation process, the residual exchange–
correlation energy vanishes:

Erxc[n�] = F[n� ] − min
� ′→n�(r)

〈� ′|T̂ + V̂Xi |� ′〉

− 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′

= F[n� ] − min
� ′→n�(r)

〈� ′|T̂ + V̂d + V̂SIC|� ′〉 = 0. (30)

Before ending this section, I should comment on the
arbitrariness and uniqueness of the fluctuation term given
by the new form. The expansion given in equation (16) is
uniquely determined once we fix a set gp,l(r). Seemingly,
the equation has dependence on a basis given by the Kohn–
Sham orbitals φk(r). However, the definition of ak1,k2 (p, l,m)
and bk1,k2 (p, l,m) implies that these coefficients are matrix
elements or projections of two waves given by gp,l(r)Y m

l (θ, φ)

and ḡ p,l(r)Y m
l (θ, φ) with respect to {φk(r)}. Indexes in the

summation appearing in Ŷplm and Ẑ plm operators run over
the whole set of Kohn–Sham orbitals. In this sense, the final
expression of the extended Kohn–Sham scheme requires a full
configuration interaction calculation and gives no reduction
in calculation steps. However, we hope that there is a big
advantage in this expansion. We need to introduce a cut-
off for each summation in an actual simulation. Efficiency
of the series expansion can be evaluated when it is given as
a converging series. There are two factors determining the
speed of convergence. One is the expansion coefficients, X plm ,
ak1,k2 (p, l,m) and bk1,k2 (p, l,m). Another is the expectation
value of each fluctuation or each correlation function given
by Ŷplm and Ẑ plm . To utilize a well converged set of Kohn–
Sham orbitals will enhance the speed of convergence in each
series expansion in V̂Xi . Thus, we may cut the doubled infinite
sum off and approximate it by a finite series in a practical

3
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calculation. For this purpose, we can and should optimize
gp,l(r). The arbitrariness of gp,l(r) is another important point
for the new quadratic form. Depending on the basis set
{φk(r)}, we can adjust gp,l(r) to have a rapidly converging
series.

4. Relevance of the negative term for
high-temperature superconductivity

To consider the relevance of the negative Ẑ plm term, let us
treat some simplified test cases. First, if l = m = 0
and if gp,0(r) is a constant, we have ḡ p,0(r) = gp,0(r).
Then, Ẑ p,0,0 is identically a zero operator. In this case we
inevitably have k-diagonal terms in the double k summation
appearing in Ŷp,0,0 operators. When we introduce the
localized electron orbital, e.g. the Wannier representation, the
index k is naturally interpreted as an index for the position
of the Wannier center and the quantum level at the site.
Thus, the diagonal terms correspond to the so-called on-site
terms. The vanishing Ẑ p,0,0 term means that only on-site
repulsion appears and no diagonal attractive on-site (on a single
orbital) interaction arises from the Coulomb positive definite
form.

Assume that a quasi-two-dimensional electron system on a
tetragonal crystal structure has a multi-band structure with two
Fermi pockets around ( πa , 0, κ) and (0, πa , κ). The constant
a is the lattice constant. Quasi-two-dimensionality allows
us to consider wavefunctions on a square lattice of relevant
atoms. We select two of them, which are close in real space,
and call them ϕ(k,κ)(r) with a two-dimensional wavevector
k = ( πa , 0) or (0, πa ). Let me introduce the notation k1 =
(( πa , 0), κ), k2 = ((0, πa ), κ). The Bloch phases of ϕk1 (r)
and ϕk2 (r) create a staggered profile of a phase factor from
ϕ∗

k1
ϕk2 on the square lattice. Thus, a channel with l = 2 is

relevant, if we consider a center surrounded by four atomic
sites.

If we introduce gp,l(r) = a cos(pr) with a properly
chosen p, we have

ḡ p,l(r) = a′
{

sin(kr)

kr
+ 2

(kr)2

(
cos(kr)− sin(kr)

kr

)}
.

Here, a and a′ are constants. The difference in gp,l(r)
and ḡ p,l(r) immediately implies finite differences between
ak1,k2 (p, l,m) and bk1,k2 (p, l,m). Thus it can be shown that
Ẑ p2m, which is constructed from the wavefunctions ϕk1(r) and
ϕk2(r), creates an electron pair hopping term. The term is

written as − f12 f ∗
21c†

k1,↑c†
k1,↓ck2,↓ck2,↑ with

f12 = 1√
2
(ak1,k2 (p, l,m)− bk1,k2 (p, l,m)) �= 0, (31)

f21 = 1√
2
(ak2,k1 (p, l,m)− bk2,k1 (p, l,m)) �= 0. (32)

This attractive channel may be relevant for a superconductor
with two-dimensional atomic structures, e.g. the copper oxide
plane in cuprates and the iron-pnictide plane in oxypnictides,
to stabilize the superconductivity.

It must be noted that the above term is a fluctuation
term, so that only a negative channel can be developed
without any fluctuation in the other positive channel. This
is another relevant point for the present discussion. In
the extended Kohn–Sham scheme, these pair hopping terms
actually originate from the exchange–correlation term. The
Hartree term, which is the mean-field term, is self-consistently
determined, taking the diagonal repulsion between electrons
into account.
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